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Abstract

According to current usage patterns, research trends, and latest reports, the performance of the wide-area networks interconnecting
geographically distributed cloud nodes (i.e. inter-datacenter networks) is gaining more and more interest. In this paper we leverage
only active approaches—thus we do not rely on information restricted to providers—and propose a deep analysis of these infrastruc-
tures for the two public-cloud leading providers: Amazon Web Services and Microsoft Azure. Our study provides an assessment of
the performance of these networks as a function of the several configuration factors under the control of the customer and evidences
specific cases of particular interest. The analysis of these cases and of their root causes, also related with service fees, provides
insights on their impact on both the Quality of Service perceived by cloud customers and the outcomes of studies neglecting them.

Our results show that Azure inter-datacenter infrastructure performs better than Amazon’s in terms of throughput (+56%, on
average). On the other hand, the performance of the two providers is comparable in terms of latency, with the exception of limited
specific cases. Moreover, some of the configuration factors cloud customers can leverage (such as larger more expensive VM
sizes, advertised to have better network performance) may have no effect on the inter-datacenter network performance actually
perceived. Counterintuitively, lower performance may even be related to higher costs for the customer. Experimental evidences
show that public-cloud providers also rely on external network providers for some geographical regions, which is the cause of lower
performance and higher costs. A comparison with previous works show that TCP throughput has not been improved recently, while
evidences of higher link capacities have been found.

Keywords: cloud computing, network performance, cloud networks, public clouds, inter-datacenter network

1. Introduction

Enterprise and government organizations increasingly lever-
age cloud solutions to supply services across the Internet, tak-
ing advantage of the ability to scale resources on demand and
experimenting unprecedented opportunities in terms of ease of
use, reduced costs, and higher reliability [1]. An increasing
number of services and applications is now delivered through
cloud-based infrastructures, and a large number of companies
more and more depend on the cloud for mission critical work-
loads. For final consumers, this is reflected in ubiquitous access
from multiple devices to content and services, delivered to al-
most anywhere users are located.

On-line service companies such as Amazon, Facebook,
Google, Microsoft, and Yahoo! have made huge investments
in networks of datacenters that host their on-line services and
cloud platforms to cope with the increasing demand. While
the complexity of these network infrastructures is completely
transparent to cloud customers, the performance available to fi-
nal consumers is deeply affected by it. Unfortunately, cloud
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a.botta@unina.it (Alessio Botta), pietro.marchetta@unina.it
(Pietro Marchetta), montieri@nm-2.com (Antonio Montieri),
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providers often provide no information about the performance
a customer should expect from the cloud network, although cus-
tomers could significantly benefit from details about the Qual-
ity of the Service (QoS) guaranteed [2]. In fact, all major
providers grant high-performance network connectivity to their
customers, but they provide no more than qualitative informa-
tion about its performance, mainly due to security and commer-
cial reasons [3, 4, 5].

Top players have made huge investments in specific tech-
nologies and cutting-edge solutions to connect distributed cloud
resources and guarantee proper performance in presence of dra-
matically dynamic demand. Datacenter operators may purchase
transit bandwidth from Telcos (usually paying based on flat or
95th percentile pricing schemes), or own dedicated lines [6].
For instance, the backbone that carries traffic between data-
centers is the largest production network at Google and runs
on an SDN- and OpenFlow-enabled infrastructure, in order
to improve manageability, performance, utilization, and cost-
efficiency of such proprietary WAN [7]. More in general, wide-
area transit bandwidth costs more than building and maintain-
ing the internal network of a datacenter [8], a topic that has
recently received much more attention [9]. Networking costs
are estimated to amount to around 15% of a datacenter’s total
worth, and are more or less equal to its power costs.

Expensive investments in this regard are further justified by
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traffic trends recently estimated by sector reports [10]: (i) cloud
IP traffic is going to account for a more and more significant
part of the overall IP traffic, being estimated to grow at a com-
pound annual growth rate (CAGR) of 23% from 2013 to 2018;
(ii) in more details, public-cloud usage is growing faster than
private one, and 31% of the cloud workloads will be in public-
cloud datacenters, up from 22% in 2013; (iii) finally, traffic be-
tween datacenters is growing faster than either traffic to end-
users or traffic within the datacenter, and will account for al-
most 9% of total datacenter traffic by 2018. The rapid growth of
this traffic is due to the proliferation of cloud services, the need
to shuttle data between clouds, and the growing volume of data
that needs to be replicated across datacenters. The effects of this
interesting trend can also be spotted in the scientific literature:
novel solutions leverage the high network performance offered
by public-cloud inter-datacenter WANs to develop high perfor-
mance applications aimed at transferring contents (e.g., multi-
media) among datacenters spread world-wide [11, 12, 13]. This
recent literature further extends the range of typical usages of
public-cloud inter-datacenter networks, that include bulk-data
transfer or on-line content transfer (e.g., from and to storage
buckets).

In this situation, however, very little information is available
about performance figures offered by public-cloud networks
connecting datacenters placed in different geographic regions.
Few results are publicly available: public-cloud providers ad-
vertise qualitative performance indicators at most or do not
disclose them at all; information provided by state-of-the-art,
public-cloud monitoring services [14] currently does not in-
clude inter-datacenter performance; finally, to the best of our
knowledge, the scientific community did not focus on the prob-
lem yet, and the poor preliminary results cannot be considered
exhaustive. The monetary cost of the experimentations neces-
sary for obtaining this kind of information, not directly unveiled
by providers, additionally exacerbates this issue. Hence, it is
hard to draw significant conclusion upon the available informa-
tion. As a consequence, a customer willing to set up a multi-
datacenter application in public clouds is not able to cleverly
determine the provider or the regions most indicated to host it,
based on the inter-datacenter network performance offered for
a certain cost.

To fill the existing gap, we have extended the work in [15]
and have performed a deep experimental evaluation of the inter-
datacenter network of the two leading cloud providers: Amazon
Web Services (hereafter Amazon) and Microsoft Azure (here-
after Azure) [16]. These two providers are a valuable and in-
teresting case of study, as they represent the 40% of the global
cloud market [17]. Although our work focused on Amazon and
Azure, the proposed methodology is general and therefore it
is generally applicable. Indeed, all our experimentations did
not rely on providers’ support, i.e., have been fulfilled with
non-cooperative approaches, by adopting the point of view of
a generic cloud customer [18]. Note how enforcing these ap-
proaches generates a number of non-trivial challenges [19], al-
though it provides a number of advantages not achievable oth-
erwise (e.g., freeing the customers from the will of the provider

to expose detailed information, thus avoiding potential conflicts
of interests). The above challenges include the proper identi-
fication of the experimental scenarios as well as the accurate
prediction of the related experimental costs to fit budget con-
straints [18]. Above all, non-cooperative approaches have to
face the lack of visibility over both the design and the imple-
mentation of the cloud network infrastructures that makes the
interpretation of the experimental results harder. Addressing
these issues, we have collected performance data about network
paths interconnecting public-cloud datacenters of the above-
cited providers, leveraging active approaches for approxima-
tively 800 hours, taking into account a set of geographic regions
hosting datacenters for both the providers.

To the best of our knowledge, our work extends the literature
in a number of aspects, as reported in the following.

• Experimental results investigate the impact on network
performance of several configuration factors under cus-
tomer control, such as the cloud provider, the region, and
the size of the virtual machines.

• Our work is able to depict a clear picture of the inter-
datacenter network performance in terms of network
throughput and latency, for the two leading public-cloud
providers.

• Our analysis provides insights into the communication in-
frastructure leveraged by cloud providers, also showing
the existence of phenomena generated by the management
strategies which may impact both the performance experi-
enced by the customers and the results of research investi-
gating these networks.

• Performance results have also been compared to provider-
imposed fees, in order to give useful guidelines to cus-
tomers willing to deploy distributed applications onto the
cloud.

• Empirical outcomes confirmed that providers often rely on
their own dedicated infrastructure to connect geograph-
ically distributed sites, but also show that, in some cir-
cumstances, they depend on third-party networks, being
forced to provide cloud customers with lower performance
at higher costs.

• Our results are compared to those found in previous work,
highlighting the changes in terms of performance figures,
and analyzing the trend that these infrastructures are sub-
jected to over time.

The paper is organized as follows: Sec. 2 surveys the most-
related literature and positions the paper accordingly; Sec. 3 de-
tails the methodology adopted for the analysis; Sec. 4 presents
the dataset we refer to in our analysis; Sec. 5 shows the results
of our work for the two providers taken into account; Sec. 6
ends the paper with the concluding remarks.
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2. Related work

Traffic in public-cloud inter-datacenter networks is rapidly
growing, as estimated by recent reports [10]. Moreover, novel
applications are critically relying on it [11, 12, 13]. Unfortu-
nately limited and poor information is available today about the
performance attained and attainable by this traffic.

Most of the works in the literature aimed at providing a
broad characterization of the performance of public clouds,
i.e., did not directly focus on network performance. Some
of these works benchmarked also intra-datacenter network
performance—i.e. the performance of the network intercon-
necting cloud resources deployed within the same site—with
different purposes and often providing conflicting results [5, 20,
21, 22, 23]. Two recent works by some of the authors of this
paper, tried to shed light on this aspect, considering both Ama-
zon and Azure, and emphasizing the importance of well-defined
methodologies [19, 24].

A limited set of works took into account the performance
of inter-datacenter networks. Chen et al. [25] focused on the
interplay of multiple datacenters performing a passive analy-
sis on Yahoo! network flow dataset. Li et al. [26] in their
broader analysis, benchmarked also cloud inter-datacenter net-
works, but considering only TCP throughput performance be-
tween two US datacenters. They adopted general purpose
instances of just one size for their experimentations. They
found that the throughput across datacenters is much smaller
than the one within the datacenter for all the providers con-
sidered, and that both Amazon and Azure show median val-
ues of inter-datacenter TCP throughput larger than 200 Mbps.1

Moreover, they reported a variation of throughput across dat-
acenters larger than the one measured within the same data-
center. Feng et al. [12] performed an experimental evaluation
of Amazon network paths interconnecting seven different dat-
acenters to support their study on a set of algorithms to min-
imize operational costs of inter-datacenter video traffic. They
considered datacenters in North California, Oregon, Virginia,
Sao Paulo, Ireland, Singapore, and Tokyo. They used medium
instances and monitored network performance for only 3 min-
utes. Their results revealed very different throughput values,
ranging from 9.6 Mbps (for the path between Sao Paulo and
Singapore) up to 545.1 Mbps (for the path between North Cal-
ifornia and Oregon). Values of end-to-end latency measured
were lower than 587.3 ms for the 90% of the paths, while the
average was about 349.1 ms. The same authors [11] proposed
a protocol to deliver packets in video conferencing, designed
for the inter-datacenter network, and tailored to the needs of
a cloud-based service. Measurement results supporting this
work and obtained adopting small instances placed in the re-
gions reported above ranged from 20.9 Mbps to 130.8 Mbps
for throughput and from 11.3 ms to 441.7 ms for latency. Fi-
nally, Garcia-Dorado and Rao [27] presented a framework that
exploits cloud-pricing schemes to construct overlay distribu-
tion networks for bulk-data transfer that proved to be effective

1Note that the authors used labels instead of names to identify the different
providers. We inferred Amazon and Azure looking at the different geographical
locations of the datacenters.

from the customer-side perspective. To evaluate their approach
they conducted experimentations on both Amazon and Azure,
leveraging medium VMs and measuring TCP bandwidth and
latency performing two-minute-long measurements during one
day. They found low variation of throughput values, especially
in paths exposing better performance.

Our work significantly differs from the others in recent liter-
ature dealing with the performance of the inter-datacenter net-
works. In spite of the analysis presented in [25], our work does
not rely on provider-restricted information. The methodology
we propose is completely based on active measurements per-
formed from the point of view of the cloud customer: there-
fore it is independent of provider’s will to disclose information,
guarantees the results to be independent from it, and allows to
replicate the study at any time. Differently from the analysis
in [26], our work explicitly focuses on the performance of inter-
datacenter networks. This gives the opportunity of deepening
the aspects strictly related to the measurement process. Thanks
to this, we investigate also the interesting traffic engineering
practices and their impact on both the measurement process
and the QoS perceived by cloud customers. Finally, with re-
spect to the measurement data presented in [11], [12], and [27],
our study is more systematic, details a repeatable methodology,
compares the performance of multiple providers, and takes into
account the specific management strategy they enforce.

3. Methodology

Characterizing public-cloud network performance may be
very challenging. In this section, we describe the choices we
have made to deal with this complexity. We first detail the ref-
erence architecture as well as the settings and tools we have
adopted (Sec. 3.1). Then we define the factors of interest to
unambiguously identify the scenarios considered for the col-
lection of the dataset (Sec. 3.2). Our intent is to ease as much
as possible the understanding of the precise conditions in which
we perform the analysis and foster its replication in other sce-
narios, for other cloud providers, or along the time.

3.1. Reference architecture

In this work we aim at measuring the performance of the
network paths interconnecting instances (i.e., virtual machines
or VMs) deployed onto geographically distributed public-cloud
sites. According to the reference architecture reported in Fig. 1,
the traffic directed from one side of the communication to the
other traverses different and distinct layers. The traffic gener-
ated by a sender VM normally traverses (i) the devices compos-
ing the intra-datacenter, high-performance network at sender
side first. Then, it enters and traverses (ii) the inter-datacenter
WAN, and, before being delivered to the receiver VM, it passes
through (iii) the intra-datacenter network at receiver side. Note
that the internals of both intra- and inter-datacenter networks
are out of our knowledge, as we adopt the point of view of the
general customer. In fact, our approach is aimed at measuring
the performance experimented by customers’ traffic. Although

3
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ceiver VM, synthetic traffic traverses different layers, i.e. the intra-
datacenter network at sender side, the inter-datacenter network, and
the intra-datacenter network at receiver side.

different layers exist, the inter-datacenter network performance
is assumed to be the bottleneck of the communication due to
practical, technological, and physical limitations. Our results
have therefore to be intended as related to these networks, if
not stated otherwise.

For our experimentation, geographically distributed VMs
have been instrumented with Ubuntu 14.04 operating system
and all the necessary measurement and diagnostic tools needed
for estimating the network performance. As already done in
previous works [19, 24], we have used the network measure-
ment tool named nuttcp [28] to inject synthetic traffic into the
network from a sender to a receiver VM. This tool allows us
to measure the raw UDP and TCP application layer throughput
and latency, transferring memory buffers from the sender to the
receiver VM.

We chose nuttcp after an initial experimental campaign com-
paring the most widely used similar tools. We found that nuttcp
was able to stably generate synthetic traffic in the virtualized
environments taken into account, thus fitting well the require-
ments of our analyses. An example of this comparison is re-
ported in Fig. 2. Fig. 2a shows how the measured through-
put varies over two minutes for the different tools tested in the
Amazon virtualized environment. The figure is related to the
case of an intra-datacenter measurement within a US datacen-
ter. Fig. 2b provides additional information showing the aver-
age throughput achievable over a 5-minute-long experiment and
the related variability. We point the reader to [19] for more de-
tails about the issues related to the generation of synthetic traffic
in cloud environments. While we chose nuttcp since it reported
results in agreement (on average) with other tools tested, we are
currently investigating the root causes that lead to the higher
traffic generation instability observed with D-ITG in cloud vir-
tualized environments.

The reference architecture described above has been modi-
fied in different ways, according to factors described in the fol-
lowing section, giving birth to a set of scenarios of interest.
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(b) Maximum achievable throughput measured over a 5-minute-
long experiment (mean and standard deviation of 1-second samples).
Nuttcp is able to stably generate synthetic traffic, exhibiting a stan-
dard deviation markedly lower than iPerf and D-ITG.

Figure 2: Measuring intra-datacenter network throughput with differ-
ent tools led to similar results (Amazon M-sized VMs, TCP traffic).

Table 1: Summary of factors and considered values.

Factors Values

Provider Amazon, Azure
Region Europe (EU), North Virginia (US),

South America (SA), Asia-Pacific (AP)
VM Size medium (M), extra-large (XL)
Transport Protocol TCP, UDP

Table 2: Cost for transferring data to another region, as of Sep.’15.
Only for Azure, data-transfer costs scale with volume.

Region Amazon Azure
(e/GB) (e/GB)

EU 0.02 0.0734–0.0422
US 0.02 0.0734–0.0422
SA 0.16 0.1527–0.1350
AP 0.09 0.1164–0.1012
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3.2. Factors for identifying scenarios of interest
The inter-datacenter network performance can be measured

and monitored in different scenarios when adopting the point
of view of the general customer. In fact, a set of factors ex-
ists that may heavily influence the perceived performance, as
confirmed by the outcome of our experimentations. In this
perspective, our work significantly extends the surveyed liter-
ature carefully analyzing the impact of these factors. Without
claiming to be exhaustive, we believe an important contribution
of our work is the identification of the factors to be carefully
taken into account when performing similar analyses. These
factors—summarized in Tab. 1—will be shortly discussed in
the following.

According to latest reports about public IaaS cloud comput-
ing [16], the market is dominated by only a few global providers
among the huge number of offers. In this work we take into ac-
count the IaaS of two providers: EC2 for Amazon [29] and
virtual machines for Azure [30]. The former is the clear market
leader (over a million active customers in more than 190 coun-
tries), while the latter is the only clear challenger, also due to the
continual investments in the latest infrastructure technologies.
Our reference architecture reported in Sec. 3.1 is general—
thus making this experimental methodology applicable to any
IaaS provider—as the comparison with other minor providers
would help to broaden the proposed picture of these high per-
formance inter-datacenter infrastructures. We purposely deepen
our analysis for the two leading public-cloud providers, to ob-
tain a clear and detailed picture of the two popular cloud offers
largely adopted by most of the customers. Both the consid-
ered providers are steadily expanding their global infrastructure
whose growth is backed by billion investments: infrastructural
expansion is claimed to be a priority because of the direct ben-
efits generated for the customers. As of today, Amazon (Azure)
has datacenters in 11 (17) regions around the world. For our
experimental campaigns we have identified 4 geographic re-
gions, where both providers have deployed datacenters: Ire-
land (hereafter EU), North Virginia (US), Sao Paulo (SA), and
Singapore (AP). Being forced to select a subset of all possi-
ble regions—mainly due to cost constraints—we have picked
a region per continent, in order to ensure geographical diver-
sity to our dataset. We investigated the network performance of
all the paths connecting all the regions in this selection. Here-
after, we will adopt the notation A→B to refer to the path from
region A to region B. A↔B will be used to refer to both the
paths A→B and B→A at once—i.e., when both directions are
taken into account. Note that traffic moving outside from a re-
gion is subjected to costs that vary with such source region (see
Tab. 2). Amazon customers can further choose an availabil-
ity zone once a region has been selected, i.e. a specific, inde-
pendent, and isolated location inside the chosen region. In our
study we have taken into account also the impact of different
availability zones inside a region.

Customers can then choose VM type and size for both
providers. The VM type indicates a family of VMs optimized
for a given task (storage, computation, etc.). Once the type is
selected, the customer can decide the size of the VM to fur-
ther specify storage and computation capabilities. Both VM

Table 3: Selected sizes and details (price may vary with regions).

VM
size

Type
and Size

CPU
cores

RAM
(GB)

Network
Performance

Min-Max
Hourly Cost (e/h)

A
m

az
on M m3.medium 1 3.75 Moderate 0.070 - 0.098

XL m3.xlarge 4 15 High 0.280 - 0.392

A
zu

re M A2 2 3.5 n/a 0.1192 - 0.1460

XL A4 8 14 n/a 0.4767 - 0.5839

type and size influence the hourly cost of the VM. In terms of
type, we used last-generation, general-purpose VMs for both
providers. In terms of size, we considered two different ones
named m3.medium and m3.xlarge for Amazon, and A2 and A4
for Azure. Hereafter we simply refer to them as medium (M),
and extra-large (XL), respectively, for both providers. Tab. 3 re-
ports further characteristics and the costs of the VMs adopted in
our analyses. Note that both providers provide details only re-
garding RAM and CPU. Regarding the network characteristics,
Amazon only provides a qualitative description of the expected
performance, Azure completely hides this information.

Finally, we have considered the two most popular L4 proto-
cols in our experiments: UDP and TCP. UDP is useful to ana-
lyze the performance of the raw IP traffic, as it adds no closed
loop-control and leaves the complete control to the application,
no matter of the state of the network. On the other hand, TCP
is governed by flow and congestion control, and makes the gen-
erated traffic subjected to the status of the network path. There-
fore it provides information on the performance the numerous
TCP-based applications will experiment.

4. Experimental Dataset

In this section we describe how the factors introduced above
have been combined to collect our dataset, whose characteris-
tics are detailed in the following.

According to the non-cooperative approach we have pro-
posed, we did not rely on provider-restricted information. All
our analysis is based on the data collected between March
and November 2015 adopting the methodology introduced
in Sec. 3. The collected process required more than 790 hours
of traffic generation (i.e. we have injected synthetic traffic into
the inter-datacenter network for more than 790 hours). We con-
sidered the 12 combinations of the four regions selected for
each provider. Experiments have been run between VMs of
the same size (M or XL). Repeated, 5-minute-long experiments
have been performed in the same conditions, equally spaced in
24-hour intervals. According to the presence of multiple avail-
ability zones in each region for Amazon, we run around 8.6K
and 880 5-minute-long experiments for Amazon and Azure,
respectively. In line with experimental needs, different avail-
ability zones have been tested in parallel. Beside performance
measures, path information about each scenario has also been
collected to complement the view on the performance.

Tab. 4 reports all the details about the dataset collected,
showing both the cumulative and the detailed information
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Table 4: Experimental dataset details. For both providers, the actual experimental duration, the number of 5-minute-long experimental samples,
the start date of the experimental campaign, and its overall duration are detailed for every combination of the factors taken into account (i.e. VM
size, cloud regions, and L4 protocol). The Duration and Experimental Duration fields show the overall time span of the experimental campaign
and the actual generation time in hours. Note that the Experimental Duration may be greater than the overall Duration, since the experiments
related to different AZs have been run in parallel.

(a) Amazon

TCP UDP

VM size Regions
Exp.

#Samples
Start

Duration
Exp.

#Samples
Start

Duration
Duration Date Duration Date

M

EU-US 48 576 3 Apr 25.76 48 576 19 Apr 27.55
US-SA 48 576 4 Mar 25.78 48 576 11 Apr 27.40
EU-SA 48 576 7 Mar 25.78 0.53 4 15 Mar 25.78
EU-AP 48 576 31 Mar 25.82 48 576 11 Apr 27.21
US-AP 48 576 7 Apr 25.77 0.53 4 15 Mar 25.36
SA-AP 48 576 5 Mar 25.90 0.53 4 14 Mar 25.53
Total 288 3456 154.81 145.59 1740 158.83

XL

EU-US 48 576 15 Apr 25.77 0.53 4 14 Mar 25.61
US-SA 48 576 15 Apr 25.77 0.53 4 15 Mar 25.33
EU-SA 48 576 16 Apr 25.83 0.53 4 15 Mar 25.41
EU-AP 48 576 14 Apr 25.84 0.53 4 14 Mar 25.77
US-AP 48 576 17 Apr 25.90 0.53 4 15 Mar 25.52
SA-AP 48 576 18 Apr 25.93 0.53 4 14 Mar 25.35
Total 288 3456 155.04 3.18 36 152.99

(b) Azure

TCP UDP

VM size Regions
Exp.

#Samples Start Duration
Exp.

#Samples Start Duration
Duration Duration

M

EU-US 16 192 22 May 25.76 5.8 70 25 May 23.73
US-SA 4 48 29 May 23.73 0.5 6 3 Nov 2.17
EU-SA 4 48 30 May 23.64 0.5 6 3 Nov 2.17
EU-AP 4 48 29 May 23.72 0.5 6 3 Nov 2.17
US-AP 4 48 30 May 23.70 0.5 6 3 Nov 2.17
SA-AP 4 48 23 May 23.73 3.2 38 26 May 18.61
Total 36 432 144.28 11 132 51.02

XL

EU-US 3.3 40 24 May 19.60 0.5 6 27 May 4.50
US-SA 4 48 6 Jun 23.71 0.5 6 2 Nov 2.16
EU-SA 4 48 7 Jun 23.67 0.5 6 2 Nov 2.16
EU-AP 4 48 1 Jun 23.72 0.5 6 2 Nov 2.16
US-AP 4 48 2 Jun 23.71 0.5 6 2 Nov 2.16
SA-AP 4 48 24 May 23.74 0.5 6 27 May 4.50
Total 23.3 280 138.15 3 36 17.64

(number of samples, start date, actual and overall duration)
about each of the scenarios taken into account. Our experi-
mentations have been subjected to providers’ fees, and accord-
ing to their terms of service, inter-datacenter traffic is subjected
to volume-based charging (see Tab. 2). We limited the num-
ber of UDP runs—especially for larger VM sizes—because of
budget constraints and the high volumes transferred during ex-
periments.

It is worth noting that we publicly release the entire dataset,
to foster further analyses and replication, and to support longi-

tudinal studies.2

5. Inter-datacenter network performance

We discuss in this section the most interesting results stem-
ming out from the analysis of data we have collected. Firstly,
we provide an assessment of the performance of the network
paths interconnecting geographically distributed cloud sites for
the two providers taken into account, comparing their perfor-
mance, and also showing how it is influenced by a set of fac-

2http://traffic.comics.unina.it/cloud.
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Figure 3: TCP throughput distribution across different regions. Each
sample represents the mean of a 5-minute-long experiment. Azure
performs better on average (+56%).

tors. This broad analysis provides useful information for cus-
tomers willing to deploy distributed applications onto the cloud,
and helps them with their setup choices, according to applica-
tion needs. Moreover, this analysis provides insights useful for
researchers and practitioners willing to perform similar analy-
ses. Secondly, we further deepen the analysis for the interesting
cases, providing insights into the infrastructures leveraged for
inter-datacenter communications.

In more details, TCP and UDP throughput performance is
discussed in Sec. 5.1 and Sec. 5.2, respectively. Sec. 5.3 pro-
vides more details about the variability of the throughput ob-
served. In Sec. 5.4 we discuss how fees and performance are
related. The performance in terms of latency is analyzed in
Sec. 5.5. Finally the impact of choosing different availability
zones is deepened in Sec. 5.6.

5.1. TCP throughput

Fig. 3 reports an overall picture of the throughput for both
providers in all the experiments (see Tab. 4). Each sample con-
sidered in the plot is the mean value of a 5-minute-long experi-
ment. It is worth noting that even the values placed far from the
global average (i.e. the dashed line in Fig. 3) well represent the
instantaneous values measured during that particular 5-minute
measurement. In fact, the coefficient of variation3 (CoV) within
each experiment is very low: the 95th percentile of its distribu-
tion along all the experiments is about 0.2. Fig. 3 shows that
Azure inter-datacenter network performs better than Amazon’s
one in terms of network throughput, achieving TCP throughput
values 56% higher (78.2 Mbps vs. 122.2 Mbps, on average).
Almost the same proportion is kept when considering maxi-
mum throughput achieved (286.2 Mbps vs 176.0 Mbps). In-
terestingly, only 25% of samples collected on Amazon’s infras-
tructure have values higher than 99 Mbps, while 95% of sam-
ples collected on Azure’s one have values higher than 57 Mbps.

3CoV(X) = σ
µ , where X is a set of experimental samples, σ is its standard

deviation, and µ is its mean value.

Finally, TCP throughput values for Amazon can be as small as
1 Mbps, while for Azure they are never smaller than 13 Mbps.

Fig. 4 provides a breakdown of the performance of TCP. The
bar chart reports mean and standard deviation values across dif-
ferent regions and different VM sizes, for the two providers.
A few important observations can be made from this figure.
We can immediately observe the large performance differences
across different regions, up to about 80% in the worst case.
Interestingly, ordering the regions according to the achievable
throughput, we obtain the same ranking for the two providers,
with the only exception of US↔AP pair, which performs bet-
ter than EU↔AP pair for Azure, on average. The achievable
TCP throughput is not clearly affected by the size of the VM,
for both providers, despite the different fees imposed. Note that
small performance differences between differing sizes are ob-
served. But, they are not always biased towards the larger, and
they are always associated to higher variability. The standard
deviation inside a region pair is normally very low, although
some pairs show a higher throughput variability only for Azure
XL VMs (e.g., SA→US, US→SA, and SA→EU).

Recall that M and XL VMs are advertised to have Moderate
and High network performance respectively, according to Ama-
zon’s documentation. Our results show that differing perfor-
mance figures across different VM sizes, highlighted in a pre-
vious work [19], are achievable only by communications that
involve VMs both deployed inside the same region, while they
do not hold for inter-datacenter TCP performance. This is likely
due to TCP dynamics.

Finally, performance figures appear to be roughly symmet-
ric in the majority of the cases examined, although during our
experimentations we also encountered severe degradations in-
volving only one direction of the communication. Fig. 5 re-
ports some of these interesting cases. As shown, intermittent
but heavy performance degradation—exposing throughput set-
tling down to less than 10 Mbps—has been observed between
AP and EU for Amazon and between SA and EU for Azure. In-
terestingly, although referring to different days and providers,
these results are both related to only one direction of the com-
munication, i.e. the downlink of VM inside EU.

We believe this broad assessment can be very useful to cloud
customers willing to draw upon public clouds to deploy their
distributed architectures. Thanks to these results, customers
can wisely select among regions, when possible. Otherwise,
this analysis provides them with a quantification of the signif-
icant network performance differences among regions. More-
over, relying on larger sizes to increase TCP inter-datacenter
performances has not effect. Also, comparing the two providers
we found that Azure performs better on average, while asking
higher costs for the VMs and for the data transfer. Due to this
trade-off, we believe that the choice of the provider should be
tailored according to regions of interest and should be driven
by the specific characteristics of the application. Finally, con-
siderations about performance symmetry may also be consid-
ered to properly place nodes in the different regions, according
to the specific application the inter-datacenter network is lever-
aged for, and to the different roles of the counterparts involved
in a communication.
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Figure 5: Relevant examples of performance asymmetry for different directions.
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Figure 6: Empirical cumulative distribution for UDP throughput
(Azure, XL VMs, EU→US). Each sample is the average of a 5-minute-
long experiment. VMs have been terminated and recreated at each
experiment.

 0

 200

 400

 600

 800

 1000

Amazon M Amazon XL Azure M Azure XL

T
hr

ou
gh

pu
t [

M
bp

s]

Provider and VM Size

TCP
UDP

(a) US→EU.

 0

 200

 400

 600

 800

 1000

Amazon M Amazon XL Azure M Azure XL

T
hr

ou
gh

pu
t [

M
bp

s]

Provider and VM Size

TCP
UDP

(b) EU→US.

Figure 7: TCP and UDP inter-datacenter average throughput for
US↔EU with M and XL VMs (whiskers report maximum and mini-
mum). While VM size does not affect the achievable TCP throughput,
UDP is able to reach higher end-to-end performance, giving evidence
of path capacities as large as more than 800 Mbps.

In general, our analysis revealed TCP throughput values
smaller than the ones reported in previous works. Indeed, au-
thors of [26] observed TCP (median) throughput higher than
200 Mbps for both Amazon and Azure. Results are hard to

compare because the authors disclosed no information about
the VM size adopted for the experimentations and restricted
inter-datacenter throughput analyses to only two regions placed
in the same continent (United States). Several interpretations
are available for this discrepancy, therefore. The different per-
formance figures may be explained by the fact that experi-
mentations in [26] involved datacenters placed at geographical
sites closer to each other and hence backed by infrastructures
implementing technologies guaranteeing different performance
levels. Another potential cause is related to the presence of
less competing traffic across the inter-datacenter networks at
the time when experimentations conducted in [26] were per-
formed, i.e. around 5 years before ours [10]. Interestingly, the
performance reduction observed after these 5 years is substan-
tially larger for Amazon than for Azure. This could be fur-
ther justified by different catchment areas for the two providers,
considering also the impact a higher number of users on TCP
congestion-control dynamics. Finally, the authors of [26] also
found throughput variability markedly higher than ours. This
observation holds although the analysis in [26] refers to data
collected over a more limited observation period (one single
day) and is related to measurements between two datacenters
both placed in the US. This reduced variability is in line with the
increase of the competing traffic already hypothesized above.

5.2. UDP throughput and end-to-end path capacity
Before digging into the details of this analysis and of the re-

lated results, we show how UDP measurement accuracy may be
biased by specific phenomena related to the resource manage-
ment enforced by providers. Properly understanding the impact
of these phenomena allows also to improve the quality of the
analysis. In more details, we found how UDP throughput val-
ues measured for Azure inter-datacenter paths can be impacted
by intra-datacenter limitations already documented [24]. TCP
performance analysis is immune from these limitations instead,
since the end-to-end bottleneck located along the paths proved
to be tighter than them. Fig. 6 shows the distribution of the
UDP throughput measured in different 5-minute-long experi-
ments between two XL VMs (EU→US). The value of the end-
to-end throughput measured along the path between the same
pair of regions settles to two well-defined values when adopt-
ing different VMs pairs: 450 Mbps and 800 Mbps. The for-
mer appears to be not related to inter-datacenter performance
as it reflects intra-datacenter limitations. Note that the mea-
sured value does not change if the VMs involved in the mea-
surement process are not terminated and then launched again
from scratch [24]. In the specific case shown, we encountered
the lower value 50% of the times: this may induce to heav-
ily under-estimate the maximum end-to-end UDP throughput
if not properly taken into account. Although the influence of
intra-datacenter limitation cannot be avoided a priori, restart-
ing the VMs involved in the measurement process helps refine
the estimation done. Note that the phenomenon described, al-
though not representing a peculiarity of the inter-datacenter net-
work, can impact the performance transparently perceived by
the cloud customer. Since this work is aimed at characteriz-
ing the inter-datacenter network, we did not focus on the intra-
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datacenter limitations already investigated in [24]. With this
aim, we purposely iterated the VM termination and recreation
process to bypass intra-datacenter limitations and unveil the pe-
culiarities of the inter-datacenter network. We believe that the
one adopted represents a good practice to adopt when perform-
ing this kind of analyses for Azure infrastructure. We can now
analyze the obtained results. In summary, they show that the
UDP throughput proved to be significantly higher than TCP’s
for all the source-destination pairs considered. Although this
result was expected (as the UDP protocol is not subjected to
congestion control dynamics typical of TCP), interestingly we
have identified cases in which UDP inter-datacenter through-
put durably reaches the intra-datacenter performance figures re-
ported in [19] and [24]. In these cases, the UDP throughput ap-
pears mainly limited by the bottlenecks imposed by providers
at source.

In detail, Fig. 7 compares UDP and TCP average through-
put obtained between the pair of regions with the best per-
formance for both providers: US and EU. While TCP perfor-
mance does not vary with the size of the VMs, UDP through-
put reaches much larger values. Note also how UDP maximum
values are compatible with limitations imposed by providers at
source and based on VM size. On the one hand, these results
suggest that worse TCP performance is determined by network
congestion across datacenters. On the other hand, the better
performance of UDP gives evidence of the network capacity
of the inter-datacenter paths. We can find further justifications
for this empirical result considering the impact of the higher
number of customers Amazon has on TCP congestion control
dynamics. Although VMs are allowed to inject traffic into the
inter-datacenter network at a rate as high as the throughput mea-
sured in [19] and [24], and the inter-datacenter network is able
to deliver traffic at this speed, network congestion represents the
main bottleneck when relying on TCP. This result is generaliz-
able across different regions, even if the actual UDP throughput
values change from case to case.

We have also estimated the capacity of each path as described
in the following to better understand how network resources are
deployed across regions. We calculated the average through-
put over 5-second-long non-overlapping windows considering
the timeseries of each UDP experiment involving XL VMs in
the dataset. This approach allowed us to mitigate the effect of
throughput spikes—potentially caused by queuing and buffer-
ing dynamics generated by the coexistence of multiple layers
of virtualization—that could exceed end-to-end capacity [31].
We then estimated the end-to-end capacity of each path extract-
ing the maximum of this time series. Note that the values ob-
tained with the approach proposed, represent a lower bound of
the capacity, i.e. the end-to-end path that a user can leverage is
able to deliver at least traffic at this throughput. The results are
shown in Fig. 8: Fig. 8a and Fig. 8b show the lower bounds
for Amazon and Azure inter-datacenter paths, respectively. Es-
timated capacities are always larger than 800 Mbps for most
cases. More in details, lower bounds for Amazon capacities
ranged from around 560 Mbps to 986 Mbps, with only two
cases exposing values smaller than 800 Mbps. For what con-
cerns Azure, estimated capacities were lower on average: they
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Figure 8: Lower bounds of path capacity for inter-datacenter paths,
measured as the maximum UDP throughput achievable between two
regions.

ranged from 502 Mbps to 912 Mbps.
Interestingly, Amazon capacity values reported in Fig. 8a re-

sult significantly larger than the homologous reported in [12],
that are always smaller than 300 Mbps. Fig. 9 compares these
values. As shown in the figure, EU→US surprisingly exposed
the largest value according to the analysis performed in [12]
but the lowest in ours. The results of our analysis show larger
values than previous ones also limiting our dataset to data re-
lated to M-sized VMs (whose UDP throughput values reach
280 Mbps in all the circumstances considered).

These discrepancies could be justified by substantial infras-
tructure enhancements. However, we believe that they could
also be impacted by the measurement methodology adopted
in [12] (single 3-minute-long experiments leveraging M-sized
VMs have been run). This further highlights the need to de-
tail the adopted methodology, to compare and validate results
through further analyses.

5.3. Throughput variability

Our further analyses have shown that inter-datacenter per-
formance for both providers may not be simply regulated by
limitations imposted at source: restrictions can be imposed by
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Figure 9: Path-capacity comparison. Lower bounds estimated in this
work are higher than values reported in one of the previous [12].

providers also along the path, also because of the several lay-
ers traversed, none of which is under the direct control of the
cloud customer. Our dataset revealed some interesting cases in
which UDP throughput measured over time is not stable. They
are mainly related to Amazon M for EU→US and Azure M and
XL for US→EU. This inflates the variance of the throughput,
as reported by the larger error bars in Fig. 7. We discuss these
representative examples in the following.

For what concerns Amazon VMs, we found a number of in-
teresting cases in which UDP throughput is not stable, show-
ing substantial changes in the perceived path capacity over the
time. An example is related to the path connecting M-sized
VMs between EU and US regions, whose minimum, average,
and maximum values are reported in Fig. 7b. Deeper details for
the spotted phenomenon are shown in Fig. 10. UDP throughput
dramatically changes its value during the time—but not dur-
ing the same experiment (Fig. 10a). It switches between two
well-defined values around 280 Mbps and 110 Mbps (Fig. 10b).
While the former is in line with maximum performance achiev-
able by M-sized Amazon VMs, the latter reflects a clear and
systematic path capacity decrease. This result is in line with
management practices commonly adopted [7] (current network
technologies, such as SDN, allow to change network config-
uration on the fly, based on system state and needs). On the
other hand, it can also be explained considering the multiple
paths that we have identified between these two regions. We un-
covered them using state-of-the-art technologies such as Paris
Traceroute Multipath Detection Algorithm (MDA) [32]. The
characteristics of the path inferred by adopting MDA for the
case examined are reported in Fig. 10c. Each node in the graph
represents a unique IP address discovered by the tool along the
path from the source VM (S) to the destination VM (D). Stars
represent anonymous hops, i.e. associated to devices whose
ICMP error messages did not reach S. According also to com-
mon datacenter topologies [9], they can be mapped to IP nodes
placed inside the intra-datacenter network, and the root cause
of their appearance is likely related to the filtering of incoming
ICMP messages enforced at the border of the US datacenter.
Edges in the graph connect nodes discovered by leveraging the
same traffic flow. As shown in the figure the sole node appear-
ing at the 5th hop acts as a loadbalancer at IP level, system-
atically distributing incoming traffic among different interfaces
(hops 6, 7, and 8). The observed characteristics are confirmed
also by the router-level graph [33, 34] obtained through alias
resolution—using state-of-the-art techniques [35, 36]—applied

to the output of MDA. Note how in this case performance varia-
tion occurs only across different experiments—even though no
termination and recreation have been enforced—while within
each of them, UDP throughput settles to a well-defined value
for all the duration of the experiment.

On the other hand, the performance variability observed for
the paths interconnecting Azure M or XL VMs between US and
EU regions exposes a significantly different nature. Indeed, the
variability spotted is due to performance variation within each
of the 5-minute-long experiments. Fig. 11 shows some exper-
imental evidences for this phenomenon. Considering three ex-
periments related to these two regions, Fig. 11a shows how the
throughput typically varies within each experiment: interest-
ingly, two well-defined throughput values can be easily identi-
fied. All the experiments between this pair of regions shows the
same pattern: the throughput dramatically switches from a high
value (between around 700 and 850 Mbps, depending also on
the VM size) to a low one (around 400 Mbps). Also the sta-
bility of the throughput samples significantly changes after the
transition: before the transition the throughput appears very un-
stable, while after the transition, it stably settles down to about
400 Mbps. The CoV is almost halved after the transition (see
the smaller values for the standard deviation in Fig. 10a).

The dramatic throughput variation described above happens
on the fly, i.e., when a communication is active. Moreover, the
high-to-low transition may happen at differing points in time
for different experiments. As a consequence, different mean
values have been observed, which also generate the larger vari-
ability range in Fig. 7a. The distribution of the transition time
is shown in Fig. 11b. Interestingly, in more than 75% of the
cases, the transition happens at around 100 s, thus exposing
a certain deterministic behavior. Differently from the case of
Amazon reported above, this empirical result could be mapped
to mechanisms that restrict the maximum capacity available to
a customer based on the traffic volume previously generated.
Fig. 11c shows the distribution of the volume of the traffic
transferred before the high-to-low throughput transition hap-
pens. For about 75% of the cases, volume transferred before the
transition ranges from 8, 000 to 10, 000 MB. Note that, small
differences in the transition time reflect in larger discrepancy in
the transferred volume because of the high throughput. Besides
Azure, similar cases have been identified also for the paths con-
necting Amazon XL VMs.

We verified that no significant variation of the actual traffic
injected in the network by the sender VMs has been identified
for the cases discussed above. Lower throughput values are re-
flected by a proportionally higher packet loss. Therefore, the
differing performance levels identified are not caused by the
traffic generation capabilities of the VMs. This further sug-
gests that the observed phenomenon is the consequence of traf-
fic management policies enforced by providers along the paths
that interconnect one region to the other. It is worth noting that
this phenomenon may impact both the results of the measure-
ment process and the user experience. Firstly, measurements
shorter than 100 s are not able to spot the throughput transi-
tion. Secondly, longer measurements could lead to misinterpret
performance variability if not associated to a deeper analysis.
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Figure 10: Amazon, EU→US, M-sized VMs. UDP throughput switches between two different values over time, suggesting the dynamic variation
of the capacity of the path. Note how the distribution of the throughput samples follows a binomial shape. A likely cause is the existence of
multiple paths between the source and the destination.

Finally, dramatic throughput drop (around −50% in the exam-
ple proposed) can cause non-negligible troubles to customers,
heavily impacting the perceived Quality of Service.

5.4. Performance vs. fees

Our empirical results show that worse performance typically
involves two specific regions: AP and SA. Interestingly, these
two regions are also the ones with the highest data-transfer costs
for the customers (see Tab. 2), thus representing unfavourable
choices for them. Indeed, data transfer from AP and SA is
subjected to higher costs with respect to EU and US regions,
which amounts to 8× and 4.5× for Amazon, and up to 3.2×
and 2.3× for Azure, respectively. To better understand these
aspects, additional experimentations have been performed. We
have traced IP paths between regions by adopting traceroute.
Note that this analysis has been performed only for Amazon,
due to ICMP filtering policies likely enforced at the borders of
the Azure datacenters, which prevent the adoption of tracer-
oute. The experimental campaigns we set up were designed to
trace the region-to-region path while running the performance
test. Then we have mapped each IP address identified along the
paths to the autonomous system it belongs to. With this aim, we

have applied IP to autonomous system number mapping (IP-to-
ASN mapping) to each IP address collected, by relying on free
external services [37] and on the IP-address ranges publicly ad-
vertised by the provider itself [38].

Fig. 12 reports the results of this analysis for both M and XL
VMs. The bar charts show for each path the number of hops it
is composed of, also classifying the hops along the path from
the source (hop 0) to the destination (whose position depends
on the length of the path). More precisely, they also show the
results of the IP-to-ASN mapping, by splitting the hops com-
posing each path in three sets: (i) the ones mapped to AS owned
by Amazon itself (#16509/#38895), reported in white; (ii) the
ones impossible to map being anonymous or associated to pri-
vate IP addresses, reported in black; (iii) the ones mapped to
ASes other than Amazon, reported in grey. Results appeared
stable over multiple experimental repetitions.

As shown in the figure, we can infer that the length of
the path is symmetric in most of the cases—i.e., it does not
change when switching source and destination regions. A few
cases showing asymmetry have been spotted. For instance: we
counted 9 or 10 hops for EU↔SA (M VMs); we counted 15 or
14 and 13 or 20 hops for US↔SA and SA↔AP, respectively
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Figure 11: Azure, US→EU. UDP throughput within 5-minute-long experiments typically switches from a high to a low stable value of 400 Mbps
(a). The transition typically happens around 100 s (b). The transferred traffic volume ranges from 8, 000 to 10, 000 MB for 75% of the cases (c).

(XL VMs ).

The black part of the bar charts shows that anonymous hops
normally appear close to the edges of the path, and may there-
fore be intuitively mapped to Amazon (i.e. intra-datacenter
hops). Hence, we can consider as part of Amazon infrastructure
the hops reported in white and black in Fig. 12a and Fig. 12b.
In this hypothesis, our results show that four out of the six paths
allow to deliver traffic among geographically distributed data-
centers without going out from the infrastructure owned and
managed by Amazon. The remaining two paths instead imply
the transit through external ASes, from which Amazon proba-
bly buys transit bandwidth. All these ASes are tier-1 (namely,
Level 3, TATA Communications, NTT America, and Telefon-
ica). A schematic view over AS-level-path graph is reported
in Fig. 12c. As shown in the figure, in some cases (i.e., where
explicitly stated) the chosen VM size may impact the AS path
traversed. Results are summarized in Tab. 5. While the num-

ber of hops traversed ranges from 9 to 20 hops, the number of
domains traversed varies from 1—when only Amazon AS is
traversed—to 3.

It is worth noting that AP and SA are the worse-connected
regions in terms of external ASes to be traversed. It is known
that the growth of cloud infrastructures is driven by multiple
factors such as appealing environmental, financial, and polit-
ical climates. The high concentrations of Internet exchanges
and high-performance network infrastructures are not necessar-
ily the most relevant factors to be taken into account to deter-
mine the location of a new datacenter to be deployed. Indeed,
the existence of friendly governments, tech sectors, or highly
educated populations are also key factors commonly consid-
ered. Therefore, the evolution of the communication infras-
tructure could be also a result of the deployment of the data-
centers. This is in accordance with the fact that AP and SA
are the regions made available most recently among the ones
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Table 5: IP-level hops and domains traversed for each pair of regions in Amazon wide-area inter-datacenter network. IP-level path length and
AS-level are symmetric if not explicitly stated otherwise.

Inter-datacenter path Number of Number of Domains
hops traversed domains traversed traversed

EU↔US 12 1 Amazon.com, Inc.;

EU↔SA 9/10 1 Amazon.com, Inc.;

US↔SA 14 1 Amazon.com, Inc.;

US↔AP 15 1 Amazon.com, Inc.;

EU↔AP 16 2 Amazon.com, Inc.; NTT America, Inc.;

SA→AP (M) 13 3 Amazon.com, Inc.; Level 3 Communications, Inc.; TATA Communications (AMERICA) Inc.;
AP→SA (M/XL) 13 3 Amazon.com, Inc.; Level 3 Communications, Inc.; NTT America, Inc.;

SA→AP (XL) 20 3 Amazon.com, Inc.; TATA Communications (AMERICA) Inc.; Telefonica International Wholesale Services, SL;

considered—being launched in 2010 and 2011, respectively.
Experimental results obtained with different VM sizes

(AP→SA) suggest the adoption of different routing policies
for VMs of different sizes. The adoption of external network
providers in case of AP or SA region gives also a possible expla-
nation for higher data-transfer costs. They are probably aimed
at discouraging intensive network usage by cloud customers,
and at guaranteeing proper revenues to the cloud provider ac-
cording to its business plans also in regions where proprietary
network infrastructures have not been deployed yet.

5.5. Latency

Our experimental data shows that latency and throughput are
in general not highly correlated. In many cases, high throughput
implies lower latency, but low throughput does not necessarily
imply high latency and vice versa. In general, latency could not
be considered the main cause of the throughput degradations.

Fig. 13 provides an overall view over performance in terms of
latency (RTT) for both providers. As expected, latency values
appear to be symmetric, although non-negligible differences ex-
ist across different regions. US region is the one with the lowest
average latency towards the considered destinations, while AP
exposes way higher values.

Fig. 14 compares the mean latencies experimented between
homologous regions for Amazon and Azure, and their vari-
ability. Average latency is equal to 193.61 ms and 214.67 ms
for Amazon and Azure, respectively. On average, RTT val-
ues appeared to be smaller than the ones reported by previous
works [11, 12]. Indeed, these values resulted to be also com-
patible with the delay constraints hypothesized for the appli-
cation proposed in [11]. In general, as shown by the limited
standard deviation, latency proved to be very stable over time,
for both providers. Fig. 15 investigates the variability of the
latency from a different angle, showing the cumulative distri-
bution of the CoV of the RTT for different experiments. For
both providers we observed CoV values smaller than 0.05 for
more than 80% of 5-minute-long experiments, and smaller than
0.1 in all but two of around 70 experiments for Amazon. Inter-
estingly, the worst-performing region pair in terms of latency
(i.e. SA↔AP) exposed the stablest performance over time.

In more details, while experimented RTT is similar across
providers for five out of six region pairs, EU↔AP shows a

markedly higher latency for Azure (197 ms vs. 315 ms). The
latency measured for EU↔AP for Azure is almost equal to the
sum of the latencies measured for EU↔US and US↔AP. This
suggests that Azure inter-datacenter infrastructure is possibly
configured to route traffic from EU to AP through US, thus in-
flating the length of the path and the perceived latency.

In the following, we propose the results of analyses aimed
at further investigating the nature of the delay perceived by the
cloud customer. Fig. 16 shows how the average RTT varies with
the geographic distance between datacenters. As expected, dis-
tance proved to have large impact on RTT performance. How-
ever, propagation delay amounts for just a limited portion of
the overall delay.4 Indeed, Fig. 16 shows how the delay with-
out the propagation quota (filled squares and circles), can be
coarsely clustered into 4 ranges: (i) 0–50 ms; (ii) 50–100 ms;
(iii) 100–150 ms; (iv) 200–250 ms. This delay—considering
negligible the computation done at the destination—is given by
transmission, elaboration, and queuing quotas. All these quotas
basically depend on the characteristics of the end-to-end con-
nections (link speeds, computational capabilities of the devices
along the path, congestion of the queues, etc.)—i.e. on the per-
formance of the technologies adopted. They are therefore influ-
enced by the economic investments done in the communication
infrastructure. Interestingly, Fig. 16 shows how the geographic
distance indirectly influences also the delay without the propa-
gation quota: the larger the distance, the larger the delay, even
without the propagation quota. This can be explained by the
impact of the distance on the technological choices done by the
providers: due to technological or budget constraints, longest
paths are provided with less performing technologies. We can-
not exclude the traffic across that specific paths is subjected to
more complex elaborations (e.g., due to the presence of mid-
dleboxes along the path performing specific tasks). We left the
analysis of these specific aspects as a future work.

4In more detail, the propagation delay has been evaluated as Dp = d
c , where

d is the distance (calculated by adopting Vincenty’s formulae) between the
source and destination datacenter (whose location has been obtained from [39]),
and c is the speed of light. Since the one considered is the minimum distance
and the actual propagation speed is slightly smaller than the speed of light, the
one evaluated represents a lower bound of the actual propagation delay.
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(a) Performance degradation involving all the AZs
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(b) AZs having consistently worse performance
(AP→SA).

Figure 18: Examples for the interesting cases.

5.6. Impact of the availability zone

In our study we have also taken into account the impact of se-
lecting different availability zones (AZs) inside a region, i.e. we
investigated how performance may vary when choosing one of
the isolated locations made available inside a region by Ama-
zon.

We set up the experimentations such that 5-minute-long ex-
periments have been launched over multiple distinct AZ pairs
at the same time. Therefore we have information about the per-
formance evolution over the time for multiple AZs in parallel.
The main outcome of this analysis is that changing AZ gives
no clear advantage in terms of achievable throughput. Fig. 17
reports the distribution of the coefficient of variation of the root
mean square error5 (CVRMS E) as an indication for the differ-
ence of throughput performance perceived along paths between
different AZs. The figure shows this result for both M and XL
VMs: CVRMS E results lower than 0.2 for 90% of the samples,
underlining how throughput performance along paths connect-
ing differing AZs in the same region is the same, on average.
In the following, cases showing higher values for CVRMS E are
deepened (Fig. 18).

In a limited number of cases, severe performance degradation
lasting for several hours has been identified, showing through-
put dropping down to values smaller than 5 Mbps. An example
for AP→EU is reported in Fig. 18a. Pairs of homologous sam-
ples report different throughput values for different AZs (thus
justifying the high CVRMS E). However, in the period between
2:00 p.m. and 8:00 p.m., all the tested logical paths connect-
ing disjoint AZ sets (namely aa and bb) show a sever degrada-
tion of performance. This example shows how AZs although
guaranteeing site isolation, revealed to be not completely in-
dependent from the network point of view. We have observed

5CVRMS E(X,Y) =

√
E[(X−Y)2]

E[E[X],E[Y]] where X and Y are the empirical distributions
of the throughput values collected considering two distinct pairs of availability
zones.

different cases similar to the one described. On the other hand,
we have also observed cases in which the degradation involves
only one AZ pair and not the others. This happened for a single
pair of regions in our dataset (AP→SA). Fig. 18b shows how
the performance monitored for the AZ pair identified by ac is
consistently lower than the homologous identified by bb during
the entire 24-hour-long observation period.

Finally, extending latency considerations to Amazon AZs,
led us to point out some interesting patterns, for which an ex-
ample is reported in Fig. 19. The figure shows that different AZ
pairs present consistently but slightly distinct latency values.
Considering that AZs are independently mapped to identifiers
for each customer account [29], and that latency values proved
to consistently depend from AZs, we believe that latency in-
formation proves to be useful to cloud customers to identify
the actual AZ assigned inside a region. This information can
be also leveraged to set up resources into the most convenient
AZ, according to potentially existing performance discrepan-
cies found. Even more interestingly, intermittent latency deteri-
oration has been spotted in several circumstances, that equally
affected the different AZs, i.e., causing a fixed latency shift.
Fig. 19 shows an instance of this phenomenon. This behavior
suggests how the root cause of this performance deterioration
is placed in the portion of the communication path shared by
all the traffic between the two regions, thus not depending from
the specific AZ chosen.

6. Conclusion

The performance of the network between geographically-
distributed cloud datacenters is gaining more and more inter-
est, according to last cloud traffic forecasts, to cutting-edge
solutions implemented and technologies developed by cloud
providers, and to recent research trends. In this paper we have
first provided a performance assessment in terms of throughput
and latency for the two leading public cloud providers: Amazon
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Figure 19: Latency between different AZs (SA→US). A constant additive latency offset is observed in case of performance degradation.

and Azure. Then we have deepened the most interesting out-
comes. Experimental results have shown how Azure performs
better in terms of maximum achievable throughput (+56%, on
average), for slightly higher costs. Moreover, evidences reveal-
ing the deployment of high performance infrastructures among
cloud datacenters have been found for both providers: both are
able to deliver (UDP) traffic between two geographically dis-
tributed sites at up to 800 Mbps. The discrepancy in maximum
TCP throughput perceived is mainly due to the impact of the
presumably high traffic concurrency for Amazon. Interesting
cases have been reported to highlight the traffic engineering
solutions adopted. Indeed, experimentations have allowed us
to infer that providers leverage proprietary networks for inter-
datacenter communications in most of the cases. Interestingly,
paths with lower performance are characterized by higher data-
transfer costs for the customers. Results confirmed that Ama-
zon uses external (i.e. non proprietary) network providers for
these connections, thus justifying higher fees imposed to the
customers. Performance in terms of latency is similar across
different providers, with the exception of one pair of regions for
which Amazon outperforms Azure. Finally, different Amazon
availability zones (AZs) proved to have the same network per-
formance on average (with the exception of one isolated case)
and network performance degradations, when encountered, in-
volve all AZs inside a region. Our results show how the ob-
served performance of the cloud inter-datacenter networks in
terms of achievable TCP throughput—thought stable—differs
from the performance figure presented in previous work. In-
deed, it appears to have decreased over time, suggesting how
either the network management policies adopted have become
more restrictive, or the growing catchment area has impacted
performance. Conversely, results about latency show how RTT
values appear to be smaller than the ones reported in previous
work.
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